Suma de los ángulos interiores de un polígono
La suma de los ángulos interiores de un polígono es
igual a dos rectos por el número de lados menos dos.
Se lee: sumatoria de los A ángulos interiores del polígono.
Para la demostración consideramos un pentágono. Consideramos un punto O interior al polígono ABCDE y unimos cada vértice con el centro O, quedando determinados los triángulos.
Por ser la suma de los ángulos interiores de un triangulo igual a dos rectos.
Sumando miembro a miembro:
Como:
Se saca factor común 2R:
La suma de los ángulos exteriores de cualquier polígono es siempre igual a 4R.
Suma de los Ángulos interiores de un Polígono
Te invito a que muevas el punto a y observes como se comprueba la propiedad.
Espero que te haya gustado y espero tus comentarios.
Daniela Arnedo, Creación realizada con GeoGebra
2 comentarios:
Profeeeeeee... no me sale cuando completo la tabla. Coloco numero de lados 3, y todo bien. Luego quiero colocar numero de lados 4 en el renglon siguiente y el anterior se me modifica. Y luego me pasa lo mismo con el 5. ¿que estoy haciendo mal?. Por ejemplo: cuando coloco bien el 4 en el 3 me sale el angulo interior del 5. snif.
Dani. Esta entrada es similar o estoy mareandome un poco con la entrada en Matematica 2010?. Voy a tener que visitarla nuevamente.
Ok.. sorry... todo bien con Matemática 2010. Son entradas diferentes!
Publicar un comentario